Page 22

Forecasting Software Survey
Page 22

Product Forecasting Methods Available (continued)
Machine Learning
Machine Learning: not included Support Vector Machine K-Nearest Neighbors Gradient Boosting Random Forrest Classification and Regression Trees Other machine-learning techniques Specify other machine-learning techniques
Analytic Solver Data Mining     y   y y y K-means and Hierarchical Clustering, Discriminant Analysis, Naive Bayes, Ensembles of all algorithms, Association Rules; Feature selection (Filtering, Wrapping, Embedded).
Analytica     y     y    
Azure ML Package for Forecasting   y y y y y y Anything with a fit/predict interface
Autobox y              
DPL           y    
EViews y              
Forecast Pro y              
iqast forecast desktop & iqast forecast server   y y   y y y k-nearest neighbors, MARS/EARTH adapative regression splines, Extreme Learning Machines.
Logility Voyager Solutions         y      
Optimal Scientist                
OxMetrics Enterprise                
RASON Data Mining     y   y y y K-means and Hierarchical Clustering, Discriminant Analysis, Naive Bayes, Ensembles of all algorithms, Association Rules; Feature selection (Filtering, Wrapping, Embedded).
RoadMap Global Planning Solution - 360             y Geneva Expert System
SAS Forecast Server   y y y y y y NN & ML capabilities available through SAS Visual Data Mining and Machine1 Learning, and SAS Enterprise Miner
Smart Inventory Planning and Optimization             y Proprietary
SOLVENTURE LIFe - Leading indicator forecasting software y              
Stata   y y y y y y lasso, ridge regression, elastic net, clustering, penalized logit, kernel-based regularized least squares, ridge regression, chi-squared automated interaction detection, partial least squares path modeling
Statgraphics     y   y y    
Stratus                
Vanguard Forecast Server     y     y y Expert selection approaches
XLMiner SDK     y   y y y K-means and Hierarchical Clustering, Discriminant Analysis, Naive Bayes, Ensembles of all algorithms, Association Rules; Feature selection (Filtering, Wrapping, Embedded).

Forecasting Software Survey Pages:
Introduction | Page 1 | Page 2 | Page 3 | Page 4 | Page 5 | Page 6 | Page 7 | Page 8 | Page 9 | Page 10 | Page 11 | Page 12 | Page 13 | Page 14 | Page 15 | Page 16 | Page 17 | Page 18 | Page 19 | Page 20 | Page 21 | Page 22 | Page 23 | Page 24 | Page 25 | Page 26 | Page 27 | Vendor Directory | Accompanying Article